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Boundedness of attractors in the complex Lorenz model
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Using the properties of a principal fiber bundle associated with the complex Lorenz model phase space, we
introduce a nonsingular base-space representation of the model. This representation enables us to find the
surfaces bounding the attractors in the base space and reveal the interconnection between boundedness prop-
erties and peculiarities of the phase dynamics of complex variables.@S1063-651X~97!05602-X#

PACS number~s!: 05.45.1b, 47.27.2i, 42.60.Mi
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The complex generalization of the Lorenz model~LM !
@1,2#

ẋ52s~x2y!,

ẏ52~12 id!y1~r2z!x, ~1!

ż52bz1
1

2
~x* y1xy* !,

was introduced by Gibbon and McGuinness@3#. Formally
the complexity of the variablesx and y ~in the LM these
variables are real! appears due to the presence of the para
eterd and the complexity of the parameterr5r 11 ir 2. The
generalization of the LM by Gibbon and McGuinness
however, much more meaningful and covers a variety
dynamic systems described by partial differential equati
and possessing a dispersion instability, such as the baroc
instability in a heated liquid@3,4# or pulsations in a laser@5#.
Equations~1! were intensively studied both as a laser mo
and in a more general context@5–12#. However, the knowl-
edge of the complex Lorenz model~CLM! is still far from
that achieved for its real counterpart, which fills books@2#.
Meanwhile, the CLM has properties that essentially dist
guish it from the ‘‘real’’ LM. The most intriguing of them is
the phase dynamics of the complex variables. This rem
able feature has been recognized already in the first inv
gations of CLM@3# and then its study was stimulated by th
problem of laser field phase dynamics@5,8–12#.

From the technical viewpoint, it is the phase dynam
that makes it difficult to apply to the CLM the analysis met
ods, which have proved their efficiency in the ‘‘standard
LM. The known approach to avoid these difficulties@5# is
based on the variable substitutionx5x1exp(iF),
y5(x21 ix3)exp(iF) and z5x4, where x1,2,3,4 are real,
which yields a closed set of equations of motion forx1,2,3,4
and a separate equation for the total phaseF. The disadvan-
tage of this approach is that the variable substitution is
one-to-one forx50, which results in a singularity of equa
tions for x1,2,3,4. Sincex regularly takes the zero value a
r 25d50, this drawback makes thex1,2,3,4 representation of
the CLM to be ineffective for the analysis of the transitio
from the ‘‘complex’’ to ‘‘real’’ behavior.
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In the present paper we propose a new representation
CLM, which contains the total phase evolution in an implic
but not in the explicit form. Being in the fiber-bundle rela
tionship with the original one, this representation does
exhibit singularities at any parameter values, and provide
efficient and clear method for studying the properties of
CLM. In particular, it enabled us to analyze the boundedn
of attractors for the CLM and to establish the interconnect
between this boundedness and the dynamics ofx and y
phases. At the end of the paper we describe a metho
derive a similar representation for the general case of a
namic model characterized by complex variables.

Consider the real functionsu, v, andw of CLM phase
variables, introduced as

u5~ uxu22uyu2!/2 ~2!

and

v1 iw5x* y. ~3!

Note that forR5(u21v21w2)1/25(uxu21uyu2)/2, one can
write uxu25R1u and uyu25R2u. Being considered as th
Cartesian coordinates in the Euclidean spaceP, the functions
u, v, w, and z provide the projection mapP:H→P. This
map projects all the elements of the CLM phase spaceH,
differing only by the common phase factor inx andy, into
the same point inP. It is to be noted that for the physica
systems described by CLM, e.g., for a laser@5#, such ele-
ments ofH belong to the same physical state. Differentiati
Eqs.~2! and ~3! with respect to time and using Eqs.~1! one
gets the equations of motion for the coordinates of the s
tem representative vector in the spaceP

u̇52~s11!u1~s2r 11z!v2r 2w2~s21!R,

v̇52~s11!v2dw2~s2r 11z!u1~s1r 12z!R,
~4!

ẇ52~s11!w1dv1r 2~R1u!,

ż52bz1v.

Consider the subspacesH8 andP8 of the spacesH and
P, respectively, such as (x,y)PH8 and (u,v,w)PP8. Note
thatH8 is identical toC2 andP8 is equivalent toR3. One can
observe that the spacesH8 andP8 and the mapP form a
3689 © 1997 The American Physical Society
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3690 55BRIEF REPORTS
principal fiber bundle@13# so thatH8 is the bundle space
P8 is the base space, and the structure group is U~1!, which
acts in the subspaceH8. This fiber bundle is similar to the
one known from quantum mechanics@14# and formed by the
Hilbert space of state vectors, the density matrix space,
the corresponding projection map. The similarity becom
clearer by identifying the ‘‘state vector’’uX& for the CLM
with the pair of complex numbers (x,y)PH8 and noting that
uxu25R1u and uyu25R2u are just the diagonal elemen
and v1 iw is the off-diagonal one for the correspondin
‘‘density matrix.’’ SinceH and P are both obtained from
H8 and P8 by their direct product on the same set ofz
variable values, the triplet (H,P,P) also forms a fiber
bundle. The remarkable property of the fiber bund
(H8,P8,P) and (H,P,P) is that the evolution inH may be
extracted from the trajectory inP. Indeed, it was proved@14#
that if the evolution of the state vector obeys the connec

Im~^XuẊ&!50, ~5!

then the phasegg(t)5arg@^X(0)uX(t)&# may be calculated
as

gg52 R GTAsds, ~6!

whereAs is

As5Im
^X~s!ud/dsuX~s!&

^X~s!uX~s!&
, ~7!

^u& denotes the standard scalar product onC2 andGT is the
closed contour inH8 composed by the segmentT of the
trajectory between two states and any curveG, which
projects onto the geodesic inP8. Since this phase is com
pletely determined by the geometry of the contour, it w
called the geometric phase@14#. For the CLM the state vec
tor may be made to obey Eq.~5! by means of the gaug
transformation

uX&→uX&exp~ igd!, ~8!

where the ‘‘dynamics phase’’gd is given by the following
equation@12#:

gd5E
0

t

ImF ^XuF&

^XuX&G
t8

dt8, ~9!

uF& is the right-hand side vector for the first two equations
Eq. ~1!.

Calculating the time derivative of the dynamic phase

ġd52
d~R2u!2Im@~s1r2z!~v1 iw !#

2R
, ~10!

one can see that it is the function of the point inP. To show
that gg may also be extracted fromP, we introduce the
spherical coordinatesr, u andf of the point inP8

u5rcosu, v5rsinucosf, w5rsinusinf.

ExpressingAs in Eq. ~6! in terms ofr, u, andf, one gets
nd
s

s

n

s

gg5 R GTsin
2~u/2!df, ~11!

where the integral is taken inP8 along the contour compose
by the trajectory and the geodesic. One can see that the r
hand side of Eq.~11! is nothing but half the solid angle
subtended by the contour. Thus the evolution of the comp
phase ofuX&, that isgd1gg , may be reconstructed from th
trajectory inP, determined by Eqs.~4!. So, one may use
these equations instead of Eq.~1! for studying the CLM.

To demonstrate the benefit of using Eqs.~4!, let us con-
sider a surfaceQ in P given by the equation

Q:q~u,v,w,z!5au1bw1a
d

udu
R50, ~12!

where a52udu/@(2s)21d2#1/2 and b52s/@(2s)2

1d2] 1/2. If one restricts himself by the subspaceP8PP,Q is
the two-dimensional semicone with the top in the origin a
the symmetry axis along the unit vector (a,0,b); the cosine
of the angle between the axis and the generator of the con
equal to6a depending on the sign ofd. For d.0 the cone
spreads towards the positive values ofw and negativeu; at
d50 it is merely the planew50; if d,0, the surface
spreads towards the negative part of thew axis and the posi-
tive one of theu axis. Note thatq is positive in the interior
cone ford.0 and negative ford,0.

Consider the time derivative

q̇5~ f,¹q!, ~13!

wheref is the phase velocity vector inP. It follows from Eq.
~13! that a trajectory, which goes through the given point
the surfaceQ, is directed ‘‘inside’’ or ‘‘outside’’ it, respec-
tively, if q̇ takes the positive or negative value at this poi
Let us see thatq̇ has the same sign at all points ofQ. Using
Eqs.~4!, one gets

q̇52~s11!q2@a~s21!2br 2#S u1
d

udu
RD , ~14!

~note thatq50 on Q). Let d.0. In this case the value
u1(d/udu)R is non-negative at the surfaceQ. Thus, for
a(s21)2br 2,(.)0 the trajectories on the surfaceQ are
tangent to it or directed towards the regionq.(,)0.

Note, that Eqs.~4! are invariant with respect to the tran
formation

d→2d, r 2→2r 2 , w→2w. ~15!

Therefore, ford,0 the surfaceQ is also a boundary. One
can also prove that every trajectory inP once enter the re-
gion bounded by the surfaceQ ~see the Appendix!.

Under the conditiona(s21)2br 250 the surfaceQ is a
stable manifold as it follows from Eq.~14!. This condition
can be written in the form

r 25r 2c5d
12s

2s
. ~16!
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55 3691BRIEF REPORTS
For d.0 andr 2.r 2c , and ford,0 andr 2,r 2c all attrac-
tors are located within the region ofP, which corresponds to
the ‘‘smaller’’ part ofP8 bounded by the coneQ. Otherwise,
all limit sets of trajectories inP are situated in the ‘‘exte-
rior’’ of Q.

In the Appendix it is also shown that there exists anot
bounding surface inP, which is a spheroidS given by the
equation

S:2R1~z2s2r 1!
25K2~r 11s!2, ~17!

where

K25
1

4
1
b

4
max~s21,1!. ~18!

The existence of the bounding surfaceQ provides an im-
portant outcome related to the properties of the phase ev
tion of the state vectoruX&. First, it means that in the lase
case (r 250) all the attractors are located in the region
P, whereq.0 for d.0 and in the symmetric region fo
d,0. If one restricts oneself by the spaceP8, it is the region
within the solid angle subtended by the coneq50. There-
fore, for the trajectory belonging to any attractor, the so
angle subtended by the contourGT @see Eq.~6!# is limited by
the bounding cone. In the limitd→60 the cone turns into
the planew50, so that the solid angle subtended by t
contourGT tends to the limit value62p. Consider now the
behavior of the phase slope time average when the detu
d changes near the resonance valued50. If follows from
Eq. ~11! that such an average contains the mean solid a
subtended by the contourGT in P8 as the contribution from
the ‘‘geometric’’ part of the total phase. Thus atd50 the
curve of the mean phase slope~the frequency! versus detun-
ing exhibits a jump by 2p/t5n, where t and n are the
period and the frequency of the amplitude pulsations.

It is to be noted that the CLM is only one model from
very wide class of those characterized by complex dyna
variables, for which the physical state is determined up to
phase factor. The examples are linear and nonlinear Sc¨-
dinger equations, the generalized Ginzburg-Landau equa
and space-time Maxwell-Bloch equations. In conclusion
wish to discuss the general way to realize the base-sp
approach for such models. First the space of ‘‘state vecto
uX& must be defined with the proper scalar product in
Generally it is the subspace of the total phase space, in w
the symmetry group U~1! acts ~for the Schro¨dinger and
Ginzburg-Landau equations they are the total spaces th
selves!. Then the connection~5! must be satisfied by mean
of the gauge transformation of the form~8! with

gd5E
0

t

ImF ^XuÛuX&

^XuX&
G
t8

dt8, ~19!

where Û is the operator~generally nonlinear! in the right-
hand side of the state vector dynamic equat
] tuX&5ÛuX&. This provides the possibility to calculate th
total phase accumulation from the base space data as the
of the dynamic and geometric phases; the last one is give
Eqs.~6! and~7!. Finally, the base-space representation of
model may be realized directly along the lines of t
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quantum-mechanical rule for the transition from the pu
state state vectoruX& to the density matrixP̂5uX&^Xu. Al-
though this circumstance is well known for the quantu
mechanical Schro¨dinger equation, our treatment of th
complex Lorenz model shows that the base-space repre
tation may be useful for the analysis of nonlinear models t

To sum up, we have shown that the phase space of
CLM may be considered as a bundle space for the fi
bundle (H,P,P). Based on the properties of this fiber bund
we have demonstrated that the trajectory in the base s
provides the information sufficient to reconstruct the traje
tory in the total phase, i.e., the phase evolution. Using
equations of motion in the base space we have found
surfaces bounding the attractors in this space and conclu
that for the laser the curve of the mean phase slope ve
detuning must exhibit a jump at the resonance detun
value. Earlier such a jump has been observed in a nume
experiment@9# and interpreted as a geometric phase manif
tation basing on the results of numerical analysis of the C
and the formal analogy between the CLM and the Sch¨-
dinger equation@12#. Now this result is obtained in the
closed analytical form based on the fundamental geometr
properties of the CLM. The method to obtain the base-sp
representation in the general case of a model with comp
variables is discussed. Using Eqs.~4! we hope to analyze
completely the CLM behavior at nonzerod andr 2; this work
is now in progress.

Our work was supported by the State Committee for H
School of Russia, Grant No. 95-0-2.1-59.

APPENDIX

Let us first show that for the CLM the limit sets of traje
tories inH are bounded by the hypersphere

S:uxu21uyu21~z2s2r 1!
22K2~s1r 1!

250, ~A1!

whereK is given in Eq.~18!. To prove this consider the
family of spheres inH

VM[uxu21uyu21~z2s2r 1!
22M250, ~A2!

and the time derivatives

V̇M522suxu222uyu222bS z2
s1r 1
2 D 21b

~s1r 1!
2

2
.

~A3!

From Eq.~A3! one can see that the function on its right-ha
side does not depend on the parametersd andr 2. Therefore,
one may refer to the known result for the LM@1,2# that this
function is negative at every sphereVM50 whose radius is
greater thanK(s1r 1). Since the left-hand side of Eq.~A2!
is negative ‘‘inside’’ the hypersphereVM50, the negative-
ness ofV̇M means that all trajectories go towards the inter
of S. The corresponding bounding surface for invariant s
in P can be obtained from Eq.~A1! by the substitution
uxu21uyu252R, which yields the equation for the sphero
~17!.
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To show that every trajectory, once and forever, com
into the region bounded by the surfaceQ, consider the fam-
ily of surfaces

qm~u,v,w,z!5au1bw2mR7
m1a

2
~z21L !50,

~A4!

wherem is the parameter andL is a positive constant. A
m52a the surface~A4! coincides with that given by Eq
~12!. We further restrict ourselves by the most important c
s.1, when the unstable behavior of the CLM solutions
possible@5#. We also putd.0 for certainty. Forr 2.r 2c we
takem<2a and the sign ‘‘minus’’ at the last term of th
left-hand side of Eq.~A4!, so that the surfacesqm50 are
situated in the region ofP whereq<0. The differentiation of
qm with respect to time gives

q̇m52~s11!~au1bW2mR!1@m~s21!1br 2#u

2~a1m!r 2w2~m1a!~s1r 1!v

2@a~s21!2br 2#R1~m1a!bz2.

At the surfaceqm50 this function may be replaced by

q̇m5@m~s21!1br 2#u2~a1m!r 2w2~m1a!~s1r 1!v

2@a~s21!2br 2#R2
m1a

2

3@~s1122b!z21~s11!L#

5q̃m~u,v,w!2
m1a

2
@~s1122b!z21~s11!L#.

~A5!
nd

D

D

s

e

The cone formq̃m(u,v,w) in Eq. ~A5! is a non-negative
value in the entire spaceP if

a~s21!2br 2
$@m~s21!1br 2#

21~a1m!2@~s1r 1!
21r 2

2#%1/2
,21.

This inequality is satisfied for

m1,m,2a, ~A6!

where

m15
a@~s21!22r 2

22~s1r 1!
2#2br 2~s21!

~s21!21r 2
21~s1r 1!

2 .

The nonempty interval~A6! exists forr 2.r 2c ands.1. We
now choose the positive constantL in Eq. ~A4! in such a way
that ~i! for m<m1 the surfaceqm50 to be outside the spher
oid given by Eq.~17!, and ~ii ! to make the last term in Eq
~A5! positive within this region. Both the requirements c
be simultaneously satisfied ifL is sufficiently large. Indeed
because the values ofu,v,w are limited atS, one can choose
L so that form<m1 the inequalityqmuS>0 is satisfied; also
it is easy to see that form1,m,2a the positiveness of
q̇muqm50 can be preserved simultaneously by the appropr

choice of L. Thus for r 2.r 2c we have the family of the
bounding surfaces which evolves from the ‘‘exterior’’ o
spheroidS at m5m1 to the limiting surfaceQ at m52a.
Each trajectory from the ‘‘exterior’’ ofS intersects conse
quently each such a surface and finally occur ‘‘within’’ th
surfaceQ.

Similar consideration can be easily done forr 2,r 2c with
the only difference that now in Eq.~A4! m changes from 1 to
2a and the sign ‘‘plus’’ must be taken for the last term.
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